Examples

This example program finds the minimum of the paraboloid function defined earlier. The location of the minimum is offset from the origin in x and y, and the function value at the minimum is non-zero. The main program is given below, it requires the example function given earlier in this chapter.

int
main (void)
{
  size_t iter = 0;
  int status;

  const gsl_multimin_fdfminimizer_type *T;
  gsl_multimin_fdfminimizer *s;

  /* Position of the minimum (1,2). */
  double par[2] = { 1.0, 2.0 };

  gsl_vector *x;
  gsl_multimin_function_fdf my_func;

  my_func.f = &my_f;
  my_func.df = &my_df;
  my_func.fdf = &my_fdf;
  my_func.n = 2;
  my_func.params = ∥

  /* Starting point, x = (5,7) */

  x = gsl_vector_alloc (2);
  gsl_vector_set (x, 0, 5.0);
  gsl_vector_set (x, 1, 7.0);

  T = gsl_multimin_fdfminimizer_conjugate_fr;
  s = gsl_multimin_fdfminimizer_alloc (T, 2);

  gsl_multimin_fdfminimizer_set (s, &my_func, x, 0.01, 1e-4);

  do
    {
      iter++;
      status = gsl_multimin_fdfminimizer_iterate (s);

      if (status)
        break;

      status = gsl_multimin_test_gradient (s->gradient, 1e-3);

      if (status == GSL_SUCCESS)
        printf ("Minimum found at:\n");

      printf ("%5d %.5f %.5f %10.5f\n", iter,
              gsl_vector_get (s->x, 0), 
              gsl_vector_get (s->x, 1), 
              s->f);

    }
  while (status == GSL_CONTINUE && iter < 100);

  gsl_multimin_fdfminimizer_free (s);
  gsl_vector_free (x);

  return 0;
}

The initial step-size is chosen as 0.01, a conservative estimate in this case, and the line minimization parameter is set at 0.0001. The program terminates when the norm of the gradient has been reduced below 0.001. The output of the program is shown below,

         x       y         f
    1 4.99629 6.99072  687.84780
    2 4.98886 6.97215  683.55456
    3 4.97400 6.93501  675.01278
    4 4.94429 6.86073  658.10798
    5 4.88487 6.71217  625.01340
    6 4.76602 6.41506  561.68440
    7 4.52833 5.82083  446.46694
    8 4.05295 4.63238  261.79422
    9 3.10219 2.25548   75.49762
   10 2.85185 1.62963   67.03704
   11 2.19088 1.76182   45.31640
   12 0.86892 2.02622   30.18555
Minimum found at:
   13 1.00000 2.00000   30.00000

Note that the algorithm gradually increases the step size as it successfully moves downhill, as can be seen by plotting the successive points.

The conjugate gradient algorithm finds the minimum on its second direction because the function is purely quadratic. Additional iterations would be needed for a more complicated function.

Here is another example using the Nelder Mead Simplex algorithm to minimize the same example object function, as above.

int 
main(void)
{
  size_t np = 2;
  double par[2] = {1.0, 2.0};

  const gsl_multimin_fminimizer_type *T = 
    gsl_multimin_fminimizer_nmsimplex;
  gsl_multimin_fminimizer *s = NULL;
  gsl_vector *ss, *x;
  gsl_multimin_function minex_func;

  size_t iter = 0, i;
  int rval = GSL_CONTINUE;
  int status = GSL_SUCCESS;
  double ssval;

  /* Initial vertex size vector */

  ss = gsl_vector_alloc (np);

  if (ss == NULL)
    {
      GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
    }
  
  gsl_vector_set_all (ss, 1.0);

  /* Starting point */

  x = gsl_vector_alloc (np);

  if (x == NULL)
    {
      gsl_vector_free(ss);
      GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
    }
  
  gsl_vector_set (x, 0, 5.0);
  gsl_vector_set (x, 1, 7.0);

  /* Initialize method and iterate */

  minex_func.f = &my_f;
  minex_func.n = np;
  minex_func.params = (void *)&par;

  s = gsl_multimin_fminimizer_alloc (T, np);
  gsl_multimin_fminimizer_set (s, &minex_func, x, ss);

  while (rval == GSL_CONTINUE)
    {
      iter++;
      status = gsl_multimin_fminimizer_iterate(s);
      
      if (status) 
        break;

      rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (s),
                                     1e-2);
      ssval = gsl_multimin_fminimizer_size (s);

      if (rval == GSL_SUCCESS)
        printf ("converged to minimum at\n");

      printf("%5d ", iter);
      for (i = 0; i < np; i++)
        {
          printf ("%10.3e ", gsl_vector_get (s->x, i));
        }
      printf("f() = %-10.3f ssize = %.3f\n", s->fval, ssval);
    }
  
  gsl_vector_free(x);
  gsl_vector_free(ss);
  gsl_multimin_fminimizer_free (s);

  return status;
}

The minimum search stops when the Simplex size drops to 0.01. The output is shown below.

    1  6.500e+00  5.000e+00 f() = 512.500    ssize = 1.082
    2  5.250e+00  4.000e+00 f() = 290.625    ssize = 1.372
    3  5.250e+00  4.000e+00 f() = 290.625    ssize = 1.372
    4  5.500e+00  1.000e+00 f() = 252.500    ssize = 1.372
    5  2.625e+00  3.500e+00 f() = 101.406    ssize = 1.823
    6  3.469e+00  1.375e+00 f() = 98.760     ssize = 1.526
    7  1.820e+00  3.156e+00 f() = 63.467     ssize = 1.105
    8  1.820e+00  3.156e+00 f() = 63.467     ssize = 1.105
    9  1.016e+00  2.812e+00 f() = 43.206     ssize = 1.105
   10  2.041e+00  2.008e+00 f() = 40.838     ssize = 0.645
   11  1.236e+00  1.664e+00 f() = 32.816     ssize = 0.645
   12  1.236e+00  1.664e+00 f() = 32.816     ssize = 0.447
   13  5.225e-01  1.980e+00 f() = 32.288     ssize = 0.447
   14  1.103e+00  2.073e+00 f() = 30.214     ssize = 0.345
   15  1.103e+00  2.073e+00 f() = 30.214     ssize = 0.264
   16  1.103e+00  2.073e+00 f() = 30.214     ssize = 0.160
   17  9.864e-01  1.934e+00 f() = 30.090     ssize = 0.132
   18  9.190e-01  1.987e+00 f() = 30.069     ssize = 0.092
   19  1.028e+00  2.017e+00 f() = 30.013     ssize = 0.056
   20  1.028e+00  2.017e+00 f() = 30.013     ssize = 0.046
   21  1.028e+00  2.017e+00 f() = 30.013     ssize = 0.033
   22  9.874e-01  1.985e+00 f() = 30.006     ssize = 0.028
   23  9.846e-01  1.995e+00 f() = 30.003     ssize = 0.023
   24  1.007e+00  2.003e+00 f() = 30.001     ssize = 0.012
converged to minimum at
   25  1.007e+00  2.003e+00 f() = 30.001     ssize = 0.010

The simplex size first increases, while the simplex moves towards the minimum. After a while the size begins to decrease as the simplex contracts around the minimum.