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where the units of 68 are the same. as those of #,. The refative error (06/8,) is a function of
E/ Ny only. The angular error can be many times less than the beamwidth, depending upon
the value of E/Ny. The accuracy formulas derived previously for the time delay and the
frequency may be rcad}!y applied to the determination of the angular error for various aper-

ture distributions.
The effective apecture width y for several aperture distributions which can be computed

analytically are given below:

Parabolic distribution

_4(_‘)=[_‘ﬂ_;_1’-\if |x[<§,A<l
Ford =0 2 = 0.863D°
Fora =035 y° = 1.88D° (L1.43)
Ford = 10 y* = 3.287D°
Cosine distribution
A(x) = cos EDE |x] < 5
vt = 1.286D" (11.44)
Triangular distribution
i - l-—%[xl x| <-.2L3
y' =0.986D° (11.45)

(nverse probability likelihood ratio, and .accuracy. The method of invzrse probability as
described by Woodward® can be used as a basis for determining the theoretical accuracies
associated with radar measurements. The likelthood function also can be used for deriving
measurement accuracy.’ Both methods result in accuracy expressions like that of Eq. (11.17).

(1.4 AMBIGUITY DIAGRAM?® !0t

The ambiguity diagram represents the response of the matched filter to the signal lor which it
is matched as well as to doppler-frequency-shifted (mismatched) signals. Although itis seldom
used as a basis for practical radac system design, it provides an indication of the limitations
and utility of particular classes of radar waveforms, and gives the radar designer general
guidelines for the selection of suitable waveforms.for various_applications.

The output of the matched filter was shown in Sec. 10.2 to be equal to the cross corcela-
tion between the received signal and the transmitted signal [Eq. (10.18)]. When the reccived
ccho signal from the target is large compared to noise, this may be written as

Output of the matched filter = J s.(t)s*(t = Ta) de (11.46)
where 5,(c) is the received signal, s(r) is the transmitted signal, s*(r) is its complex conjugate,
and Ty is the estimate of the time delay (considered a variable). Complex notation is assumed
in Eq. (11.46). The transmitted signal expressed in complex form is u(r)e/**/°* where u(c) is the
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complex-modulation function whose magaitude |u(c)! is the envelope of the real signal, and 3
is the carrier frequency. The received echo signal is assumed to be the same as the transmitted
signal except for the time delay T; and a doppler frequency shilt f,. Thus

s ) = e = Tg)elPHimelan=Ta (1147}

(The change of amplitude of the ccho signal isignored here.) With these definitions the output
of the matched filter is

Ou(pu[ = l u([ - ]’b)eilxlfo'h)(l"fal[u(l - T-R)e,‘z./,u—r;,]. dt
- [ u(t ~ To)u*(t — Tip)ei2*Wo*fi=Ta) p=ilefolt=Ta) gy (11.48)
It is customary to set Ty =0 and f, = 0, and to define Ty — Tk = — Tk = Tx. The output of

the matched filter 1s then

dTe S = [silu(c+ oo ds (11.49)

In this form a positive T, indicates a target beyond the reference delay Ty, and a positive f,
indicates an incoming target.!” The squared magnitude |x(Tx. fu)|* is called the ambiguiry
funcrion and its plot is the ambiguity diagram.

The ambiguity diagram has been used to assess the properties of the transmitted

waveform as regards its target resolution, measurement accuracy, ambiguity. and response to
clutter.

Properties of the ambiguity diagram. The function | ¢(Tx. fi)|? has the following properties:

Maximum value of | ¢(Tx. fu)|* = (0. 0)|* = (2E)? (11.50)
ld = Ta =S = 1 Tes S |2 (11.51)

| ((Te . O = fu(l)u'(t-m&— Tx) d(r (11.52)

[2(0. f){* = J‘u’(l)e"""' dt‘ (11.53)

U [(Te. fI* dTw dfy = (2E)? (11.54)

The first equation given above, Eq. (11.50), states that the maximum valuc of the ambigu-
ity function occurs at the origin and its value is (2E)?, where E is the energy contained in the
echo signal. Equation (11.51) is a symmetry relation. Equations (11.52) and (11.53) describe
the behavior of the ambiguity function on the time-delay axis and the frequency axis, respec-
tively. Along the Ty axis the function g{Tk. f,) is the autocorrelation function of the modula-
tion u(r), and along the f; axis it is proportional to the spectrum of u?(r). Equation (11.54)
states that the total volume under the ambiguity function is a constant equal to (2E)%.

Ideal ambiguity diagram. I(there were no theoretical restrictions, the ideal ambiguity diagram
would consist of a single peak of infinitesimal thickness at the origin and be zero everywhere
else, as shown in Fig. 11.7. The single spike eliminates any ambignities, and its infinitesimal
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Figure 11.7 Ideal, but unattainable, ambiguity diagram.

thickness at the origin permits the frequency and the echo delay time to be determined
simultaneously to as high a degree of accuracy as desired. [t would also permit the resolution
of two targets no matter how close together they were on the ambiguity diagram. Naturally, it
is not surprising that such a desirable ambiguity diagram is not possible. The fundamental
properties of the ambiguity function prohibit this type of idealized behavior. The two chief
restrictions are that the maximum height of the | |* fuaction be (2£)* and that the volume
under the surface be finite and equal (2E)*. Therefore the peak at the origin is of fixed height
and the function encloses a fixed volume. A reasonable approximation to the ideal ambiguity
diagram might appear as in Fig. 11.8. This waveform does not result in ambiguities since there
is only one peak, but the single peak might be too broad to satisfy the requirements of
accuracy and resolution. The peak might be narrowed, but in order to conserve the volume
under its surface, the function must be raised elsewhere. If the peak is made too narrow, the
requirement for a constant volume might cause peaks to form at regions of the ambiguity
diagram other than the origin and give rise to ambiguities. Thus the requirements foc accuracy
and ambiguity may oot alwhys be possible to satisfy simultancously.

i 2]

JAREPR

Figure 11.8 An approximation to the ideal ambiguity
) . diagram, taking account the cestrictions imposed by the

= signat duration requirement for a fixed value of (2E)* at the origin and
& = signal bandwidth a constaat volume enclosed by the |¢|? sucface.
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The ambiguity diagram in three dimensions may be likened to a box of sand. The total
amount of sand in the box is fixed and corresponds to a fixed signal encrgy. No sand can be
added, and none can be removed. The sand may be piled up at the cznter (origin) to as narrow
a pile as one would like, but its height can be no greater than a fixed amount (2E)*. Ii the sand
in the center is in too narrow a pile, the sand which remains might find itself in one or more
additional piles, perhaps as big as the one at the center.

The optimum waveform is one which has the desired ambiguity diagram for a given
amount of “sand ” (enecgy). The usual pulse radar or the usual CW radar, as we shall sce, does
not result in an ideal diagram. To produce an ambiguity diagram such as that shown in
Fig. 11.8, the transmissions must be noisclike.

The synthesis of the waveform required to satisfy the requirements of accuracy, ambigu-
ity. and resolution as determined by the ambiguity diagram is a difficult task. The usual design
procedure is to compute the ambiguity diagram for the more common waveforms and to
observe its behavior. Because of the limitations of synthesis, the ambiguity diagram has been
more a measure of the suitability of a selected waveform than a means of finding the optimum.
waveform.

Single pulse of sine wave. The ambiguity diagram for a single rectangular pulse ol sine wave is
shown in Fig. 11.9. Contours for constant values of doppler frequency shift (velocity) are
shown in Fig. 11.9a. The contour for zero velocity is triangular in shape and represents the
autocorrelation function of a rectangular pulse such as would be predicted from Eq. (11.52).
Contours for fixed values of time delay are showr in Fig. [ 1.9b. The centec contour corre-
sponding to Ty = 0 is the spectrum of a rectangular pulsc [Eq. (11.53)]. The composite three-
dimensional ambiguity surface is shown in Fig. 11.9¢.
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Figure 11.10 Two-dimensional am-
biguity diagram for a single pulse of
sinc wave. {a) Long pulse; (b) short
pulse.

[tis usually inconvenient to draw a three-dimensional plot of the ambiguity diagram. For
this reason a two-dimensional plot is often used to convey the salient features. Figure 11.10 is
an example of the two-dimensional plot of the three-dimensional ambiguity diagram corre-
sponding to. théisingle pulse of Fig. 11.9¢c. Shading is used to give an indication of the regions
,)] ‘is large (completely shaded areas). regions where |¢|* is small but not
zero (llgnlls"shadwcd areas), and regions where ||’ is zero (no shading). The plot for a single
pulse shows a single elliptically shaped region in which |¢|* 1s large. This is what would have
been expected from our previous discussions since a single measurement does not result in
ambiguity il the threshold is chosen propecly. Range error is proportional to the pulse width 1,
while doppler error is proportional to 1/r. Shortening the pulse width improves the range
accuracy. but at the expense of the doppler-velocity accuracy. Although the shape of the ellipse
can be as thin or as broad as one likes in cither axis, the opposite will be true for the other axis.
The region in the vicinity of the origin cannot be made as small as we wish along both axes
stmultaneously without shifting some of the completely :shaded region elsewhere in the
diagram.

By letting t become very large (essentially infinite), Fig. 11.10 may also be used to repre-
sent a CW radar. Similarly by letting ©.be very small (infinitesimal), the diagram applies to an
impulse radar.

Periodic pulse train. Consider a sinusotd modulated by a train of five pulses, cach of width 1.
The pulse-repetition period is T,, and the duration of the pulse train is T, (Fig. [1.11a). The
ambiguity diagram is represented in Fig. 11.11b. With a single pulse the time-delay- and
requency-measurement accuracies depend on one another and are linked by the pulse width t.
The periodic train of pulses, however, does not sufler this limitation. The time-delay error is
determined by the pulse width t as before, but the [requency accuracy is determined by the
total duration of the pulse train. Thus the time- and [requency-measurement accuracics may
be made independent of one another.

For the privilege of independently controlling the time and (requency accuracy with a
periodic wavelorm, additional peaks occur in the ambiguity diagram. These peaks cause
ambiguities. The total volume represented by the shaded areas of the ambiguity diagram for
the periodic wavelorm approximates the total volume of the ambiguity diagram of the single
pulse, assuming that the energy of the two wavelorms are the same. This {ollows from the
relationship expressed by Eq. (11.54). Ia practice, the radar designer attempts to select the
pulse-repetition period T, so that all targets of interest occur only in the vicinity of the central
peak, all other peaks being far removed from the region occupied by the targets. The periodic-
pulse waveform is a good one from the point of view of accuracy if the radar application is
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such that it is possible to jgnore or eliminate any ambiguities which arise. The fact that most
practical radars employ this type of waveform attests to its usefulness far better than any
theoretical analysis which might be presented here. It is encouraging, however, when theoreti-
cal considerations substantiate the qualitative, intuitive reasoning upon which most practical
eagineering decisions musl’ﬁsually be based, for lack of any better criterion.

Single frequency-modulated pulse. Ambiguities may be avoided with a single-pulse waveform
rather than a periodic-pulse waveform. Although the accuracy of simultaneously measuring
time and frequency with a simple pulse-modulated sinusoid was seen to be limited, it is
possible to obtain simultancous time and [requency measurements te as High-a degrec of
accuracy as desired by transmitting a pulse long enough to satisfy the desiced frequency
accuracy and one with enough bandwidth to satisfy the time accuracy. In other words, the
peak at the center of the-ambiguity diagram may be narrowed by transmitting a pulse with a
large band width times pulse-width product (large f). One method of increasing the bandwidth
of a pulse of duration T#is to provide internal modulation. The ambiguity diagram for a
frequency-modulated pulse is shown in Fig. 11.12. The waveform is a single pulse of sine wave
whose frequency is decreased linearly from fy + Af /210 f, — Af/2 over the duration of the pulse
T, where fq is the carrier frequency and Af = B is the frequency excursion.

The ambiguity diagram is elliptical, as for the single pulse of unmodulated sine wave.
However, the axis of the cllipse is tilted at an angle to both the time and frequency axes. This
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Figure 11.12 Ambiguity diagram for a single frequency-
modulated pulse. (Also called the chirp pulse-compression
waveform.)

particular waveform is not entirzly satisfactory. The accuracy along either the time axis or the
frequency axis can be made as good as desired. However, the accuracy along the cllipse major
axis is refatively poor. Thisis a consequence of the facz that both the time delay (range) and the
frequency (doppler) are both determined by measuring a frequency shift. Thus neither
the range nor the velocity can be determined without knowledge of the other.

This limitation can be overcome by transmitting a second FM pulse whose slope on the
ambiguity diagram is different (rom that of Fig. 11.12. The second modulation might be a
linear frequency modulation which increases, rather than decreases, in frequency. This is
analogous to the. FM-CW radar of Chap. 3.in which the doppler [requency shift is extracted as
well as the range. [t will be recalled that the sawtooth frequency-modulated waveform of the
FM-CW radar wascapable of determining the range as long as there was no doppler frequency
shift. By using a triangular waveform instead of the sawtooth waveform it was possible to
measure both the range and.the doppler frequency. The same technique can-be used with the

frequency-modutated pulse radar.

Classes of ambiguity diagrams. There arc threc gencral classes of ambiguity diagrams,
Fig. 11.13. The knife edge, or ridge, is obtained with a single pulse of sinc wave. Its oricntation
is along the time-delay axis for a long pulse, along the frequency axis for a short pulse, or it can
be rotated to any direction in the Tk, f; plane by the application of lincar frequency modula-
tion. The bed of spikes in Fig. 11.135 is obtained with a periodic train of pulses. The internal
structure of each of the major components, illustrated figuratively by the simple arrows,
depends on the waveform of the individual pulses. The thumbtack ambiguity diagram,
Fig. [1.13¢, is obtained with noise or pseudonoise waveforms. The width of the spike at the
center can be made narrow along the time axis and along the frequency axis by increasing the
bandwidth and pulse duration, respectively. However, the plateau which surrounds the spike is
more complex than illustrated in the simple sketch. With real waveforms, the sidelobes in the
plateau region can be higher than might be desired. Furthermore, the extent of the platiorm
increases as the spike is made narrower since the total volume of the ambiguity function must

be a constant, as was given by Eq. (11.54). There can be many variations of these three classes,
as itlustrated in Refl 11.

Transmitted waveform and the ambiguity function. The particular waveform transmitted by a
radar is chosen to satisfy the requircments for (1) detection, (2) measurement accuracy,
(3) resolution, (4) ambiguity, and (5) clutter rejection. The ambiguity function and its plot, the
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Figure 11.13 Classes of ambiguity diagrams: (a} knife edge. or ridge; () bed. of spikes; (c).thumbtack.
(From G. W. Deley.'* Courtesy McGraw-Hill Book Company )

ambiguity diagram, may be used to assess qualitatively how well a waveform can achieve these
requirements. Each of these will be discussed briefly.

[f the receiver is designed as a matched filier for the particular transmitted waveform, the
probability of detection is independent of the shape of the waveform and depends only upon
E/Nq, the ratio of the total energy E contained in the signal to the noise power per unit
bandwidth. The requitements for detection do not place any demands on the shape of the
transmitted waveform except (1) that it be possible to achieve with practical radar transmit-
ters, and (2) that it is possible to construct the proper matched filter, or a reasonable approxi-
mation thereto. The maximum value of the ambiguity function occurs at Tg =0, f; = O and is
equal to (2E)%. Thus the valuc (0, 0){? is an indication of the detection capabilities of the
radar. Since the plot of the ambiguity function is often normalized so that (0, 0)|* = 1, the
ambiguity diagram is seldom used to assess the detection capabilities of the waveform.

The accuracy with which the range and the velocity can be measured by a particuiar
waveform depends on the width of the spike, centered at |¢(0, 0)|*, along the time and the
frequency axes. The resolution is also related to the width of the central spike, but in order to
resolve two closcly spaced targets the central spike must be isolated. [t cannet have any high
peaks ncarby that can mask another target close to the desired target. A waveferrm that yiclds
good resolution will also yield good accuracy, but the reverse is not always so.
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A continuous waveform (a single pulse) produces an ambiguity diagram with a single
peak. A discontinuous waveform can result in peaks in the ambiguity diagram at other valyes
of Tg.fs. The pulse train (Fig. 11.11 or 11.13b) is an example. The preseace of additional
spikes can lead to ambiguiry in the measurement of target parameters. An ambiguous measure-
ment is one in which there is more than one choice available for the correct value of a
parameter. but only one choice is appropriate. Thus the correct value is uncertain. The
ambiguity diagram permits a visual indication of the ambiguities possible with a particular
waveform. The ambiguity problem is characteristic of a single target. a5 1s the detzction and
accuracy requircments of a waveform, whereas resolution is concerned with multiple targets.

The ambiguity diagram may be used to determine the ability of a waveform to reject
clutter by superimposing on the Ty, f, plans the regions wierz clutter is found. If the trans-
mitted waveform is to have good clutter-rgjection properties th2 ambiguity function should
have little or no response in the regions of clutter.

The problem of synthesizing optimum waveforms based on a desired ambiguity diagram
specified by operational requirements is a difficult one. The approach to selecting a waveform
with a suitdble ambiguity diagram is generally by trial and error rather than by synthesis.

In summary. this section has considered some of the factors which enter 1nto the selection
of the proper transmitted waveform. The problem of designing a waveform o achieve detec-
tion may be considered independently of the requirements of accuracy. ambiguity resolution,
and cluttec rejection. A waveform satisfies the requirements of detection if its energy is
sufficiently large and il the receiver is designed in an optimurn maaner, such as a matched -Alter
receiver. Waveform shape is important only as 1t affects the practical design of the matched
filter. The ability of a particular waveform to satis{y the requiremnents of accuracy, ambiguity,
resolution, and clutter rejection may be qualitatively determined [tom an examination of the
ambiguity diagram. [n genera!, periodic waveforms may be designed to satisfy the require-
meats of accuracy and resolution provided the resulting ambiguities can be tolerated. A
wavelorm consisting of a single pulse of sinusoid avoids the ambtiguity problem, but the time
delay and frequency cannot simultancously be measured to as great an uccuracy as might be
desired. However. it is possible to determine simultanzously both the frequency and the time
delay to any degree of accuracy with a transmitted wavelorm containing a large bandwidth
pulse-width product (large Bz product). The problem of synthesizing optimum waveforms
from an ambiguity diagram specified by operational requirements is a difficult one and is often
approached by trial and error

The name ambiguiry funcrion for | x(Tx. fi)|* is somewhat misleading since this function
describes morc about the waveform than just its ambiguity propertics. Woodward® coined the
name to demonstrate that the total volume under this function is a constant equal to (2E)?,
independent of the shape of the transmitted wavelorm, [Eq. (11.54)]. Thus the total area of
ambiguiry, or uncertainty, is the same no matter how | (7%, fo)|* is distributed over the Tx. f,
plane, as illustrated by the sandbox analogy mentioned earlier in this section. The reader is
advised not to be distracted by trying to undecstand why this function is described by the
ambiguous use of the term “ambiguity.”

11.5 PULSE COMPRESSION

Pulse compression allows a radar to utilize a long pulse to achizve large radiated energy, but
simultaneously to obtain the range resolution of a short pulse. It accomplishes this by employ-
ing {requency or phase modulation to widen the signal bardwidth. (Amplitude modulation is
also possible. but is seldom used.) The reccived signal is processed in a matched filter that



